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The Van Vleck formula is an approximate, semiclassical expression for the
quantum propagator. It is the starting point for the derivation of the Gutzwiller
trace formula, and through this, a variety of other expansions representing
eigenvalues, wave functions, and matrix elements in terms of classical periodic
orbits. These are currently among the best and most promising theoretical tools
for understanding the asymptotic behavior of quantum systems whose classical
analogs are chaotic. Nevertheless, there are currently several questions
remaining about the meaning and validity of the Van Vieck formula, such as
those involving its behavior for long times. This article surveys an important
aspect of the Van Vleck formula, namely, the relationship between it and phase
space geometry, as revealed by Maslov’s theory of wave asymptotics. The
geometrical constructions involved are developed with a minimum of mathe-
matical formalism.
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classical mechanics; quantum chaos; Gutzwiller trace formula.

1. INTRODUCTION

The Van Vieck formula is a semiclassical approximation for the usual
propagator in quantum mechanics,

K", 1", x', 6 ) =<x" U5, ) X' 0" — ') (L)

where the singly primed variables (x', t') represent some initial position
and time, the doubly primed variables (x”, ¢") represent some final position
and time, U(z", ¢') is the unitary time evolution operator for some quantum
system (possibly time-dependent), and @ is the unit step function. The
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Van Vieck formula is most commonly applied to the nonrelativistic
Schrodinger equation for scalar particles, as we shall do here.

The Van Vleck formula is the starting point for a sequence of deriva-
tions, approximations, and intuitive leaps which take one from exact quan-
tum expressions to a variety of results expressing energy eigenvalues and
their correlations, wave functions, and matrix elements in terms of classical
periodic orbits. The first stage in this process is the Gutzwiller trace for-
mula,” which expresses the density of states of a quantum system as a sum
over the periodic orbits of the corresponding classical system. Various
resummation techniques can be applied to the Gutzwiller trace formula,
yielding one of the principal bodies of theoretical methods available for the
analysis of quantum systems whose classical analogs are chaotic. Con-
siderable progress has been made along these lines in recent years, and new
methods have appeared for understanding a variety of systems in atomic,
molecular, and nuclear physics.’” Many of these results are in a sense
improvements on the Gutzwiller trace formula, having advantages in terms
of their convergence properties. Nevertheless, these results all depend logi-
cally on the Gutzwiller trace formula and, through it, on the Van Vleck
formula, since direct methods of derivation are not known. Furthermore,
there remain important questions concerning the Van Vleck formula itself,
such as its long-time validity.® Therefore a proper understanding of the
Van Vleck formula is more important than ever.

This article surveys an important aspect of this question, namely the
relation between the Van Vieck formula and geometrical structures in the
classical phase space. This is a subject developed in large measure by
Maslov and his co-workers,*’ whose theories have been nicely reviewed in
the context of time-independent and scattering problems by Delos.®
Another clear introduction to this theory has been given by Percival.®) In
this article we will focus primarily on the Van Vieck formula and its deriva-
tion, keeping in mind a primary application of this formula, the derivation
of the Gutzwiller trace formula. The latter derivation is notorious for its
difficulty, and this survey is intended in part to illuminate and remove part
of this difficulty. The specific manner in which geometrical ideas can be
applied to the Gutzwiller trace formula and to other trace formulas has
been explored in considerably more detail in ref. 7.

There exists a substantial body of mathematical literature on wave
asymptotics, of which the books by Guillemin and Sternberg® and
Leray® are important examples. Much of this literature is, however, rather
technical, and as a result it has been quite decoupled from and has had
little impact on semiclassical studies in physical applications. There are
even examples of important results known in the physical literature, such
as the Gutzwiller trace formula itself, which apparently have been rederived
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in the mathematical literature, with even today scarcely an acknowledg-
ment of the parallel (and earlier) development. The books by Maslov and
by Maslov and Fedoriuk are relatively more accessible than the other
mathematical references in this area, and pay particular attention to the
Van Vleck formula. Although they are still rather technical, they are the
primary references for this survey.

In this article we will attempt to convey essential geometrical ideas in
an intuitive and plausible way, without excessive mathematical formalism
on rigorous proofs. The book by Arnold"® is a standard reference on the
background material for this article, and contains in addition considerable
material on wave asymptotics in general and the Van Vleck formula in par-
ticular. One of the main purpose of the geometrical approach to wave
asymptotics is to understand properly the covariance of semiclassical
mechanics under the canonical transformations of classical mechanics. This
is a subject which is perhaps best known in the physical literature on
account of the work of Miller,""") which explores the self-consistency of
semiclassical methods in different representations, and which has had con-
siderable influence. Covariance of semiclassical mechanics under canonical
transformations is of particular relevance to the Gutzwiller trace formula,
in which transformations are performed (such as from the time representa-
tion to the energy representation), and in which the final results (the trace
formula) are expressed in terms of canonical invariants, after a derivation
which proceeds through representation-dependent intermediaries.

Nowadays it is popular to derive the Van Vleck formula as the semi-
classical limit of the Feynman path integral for the propagator.'® This
approach is natural in view of the fundamental role played by path
integrals in many areas of physics, and in view of the great physical appeal
of path integrals and the physical intuition they provide. But Van Vleck’s
original derivation’® was based on a different approach, namely, multi-
dimensional, time-dependent WKB or phase integral theory. The latter
approach has a number of advantages over that based on the path integral,
such as the fact that it is easily generalized to cover a wide class of wave
equations (not just those having the standard kinetic-plus-potential form of
quantum mechanics), and the fact that representation covariance is (with
proper understanding) essentially built in. It is the WKB approach which
we will follow in this survey.

2. BACKGROUND ON THE PROPAGATOR

In this section we present some background on the propagator, setting
up the derivation of its semiclassical limit in terms of WKB theory. We do
this by expressing the propagator as the solution of an initial value
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problem in quantum mechanics, which, when subjected to a semiclassical
approximation, leads to an initial value problem in time-dependent, multi-
dimensional WKB theory. The purely quantum mechanical side of this
picture is a standard subject in Green’s function theory,"*) which we now
summarize.

The propagator can be defined as the solution of the inhomogeneous
Schrodinger equation,

<H” —ih 5%) K(x",t";x',t'y= —ihd(t"— ') d(x" —x’) (2.1)

subject to the condition K=0 for " <. Here the double prime on H”
indicates that the quantum operators in the Hamiltonian act on x”, and
that any explicit time dependence in the Hamiltonian is evaluated at ¢”.
For the most part, we will not distinguish notationally between the one-
dimensional and the multidimensional cases. For example, the symbol x
should be interpreted as an f-dimensional vector, where fis the number of
degrees of freedom, and similarly for p, etc. Scalar products, where they
occur, are usually obvious, as in pdx, which stands for ¥ p,dx,. The
distinction between x and ¢ is that the former suggests rectangular
coordinates, whereas the latter suggests generalized coordinates on phase
space.

Because the inhomogeneous term in Eq. (2.1) vanishes for ¢” # ¢, the
propagator satisfies the ordinary, homogeneous Schrodinger equation in
the double-primed variables for ¢”>¢ (and also for "</, where K
vanishes). Therefore the determination of K for " > ¢’ can be viewed as an
initial value problem, in which the initial conditions can be taken as. the
value of K for small positive times, i.e., for t"=¢+¢, with e >0%.

To find these initial conditions, we introduce the two-time unitary
evolution operator U(z”, '), defined as the operator solution of

ou(t”, t')

ih P

= H(") U(t", t') (2.2)

subject to the initial condition U = Identity at ¢” = #.*>) Then we can write
K in terms of the x-space matrix elements of U as shown in Eq. (1.1), as
follows by directly substituting Eq. (1.1) into Eq. (2.1), and noting that K
does indeed vanish for " < ¢. If we now let #” approach ¢’ from above, then
Eg. (1.1) shows that

lim K(x", ¢ +&x,t)=8(x"—x) (2.3)

g0+
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We thereby obtain a simple way of thinking about the propagator: for
">, K(x",t";x', ') is the solution ¥(x”,t") of the time-dependent
Schrodinger equation, subject to the initial condition Y{x”, t") =6(x" —x')
at 1" =1

2.1. The Initial Value Problem in WKB Theory

We now consider the initial value problem in WKB theory, in order
to solve for K in the semiclassical approximation. We begin by considering
time-dependent WKB theory from a general standpoint.

Suppose we are given an initial wave function of the form

W(x, 1) =olx) = Ao(x) exp[(i/h) So(x)] (2.4)

where for now we suppress the primes on x. The initial amplitude is 44(x),
assumed to be real and positive, and the initial action is Sy{x). This form
should properly be regarded as the leading term of an asymptotic expan-
sion in #, in which O(#) terms in s are neglected. Since the action turns out
to be representable in terms of a line integral, we will say that a wave
function such as in Eq. (2.4) has the “phase integral” or “WKB form.”

We will make the assumption that at a later time ¢ >’ the wave
function can again be represented in WKB form,

W(x, t")y=A(x, t") expl (i/h) S(x, t")] (2.3)

This assumption may not be valid; as we will discuss more fully below, it
turns out that the final wave function can be represented as shown in Eq.
(2.5) only for sufficiently short elapsed times ¢” — ¢, after which it must be
replaced by a sum of terms of the WKB form. The breakdown of the single-
term representation is due to the formation of caustics, and it occurs at
times which are classical, i.e., of order #°. For sufficiently longer times, the
WKB approach presumably breaks down altogether. For some time now
it has been assumed that this breakdown is due to the progressive convolu-
tion of manifolds in phase space,'® which ultimately reach a quantum
scale. This assumption has lately been called into question,® and it is
likely that a more searching analysis would reveal important new insights
into the time limitations of WKB theory. Certainly of the two limita-
tions-—the short-time limit on the single-term expression, and the longer-
time limit on the multiterm expression—the former is more innocuous. We
will return to the question of time limitations later; for the moment we will
simply proceed with Eq. (2.5) as it stands.

Our immediate problem is to solve for the final amplitude A(x, t) and
action S(x, t”), given the initial values Ay(x), Sy(x). We do this by



12 Littiejohn

substituting Eq. (2.5) into the (double-primed) time-dependent Schrodinger
equation, expanding in powers of #, and neglecting terms of order # and
higher. At lowest order we find the time-dependent Hamilton—Jacobi
equation for the action S,

aS(x, 1) )\ . 0S(x, ")
H<x, = ,z)+ =0 (2.6)

where the momentum dependence of the Hamiltonian has been replaced
by p=0S/6x. This result is verified by standard calculations!'® for
Hamiltonians of the form

H(x, p, t)=p*2m+ V(x, 1) (2.7)

(in any number of degrees of freedom), but it can be justified as well for
evolution operators which are quite general functions of (x, p, ¢) (so long
as they have a classical limit).

The result of the expansion at the next order in # is the so-called
amplitude transport equation for 4, which is conveniently expressed in
terms of a quantity p, defined by

plx, t")=|A(x, t")|? (2.8)

As we shall see later, for small elapsed times, A is real and positive, just like
its initial condition A,, and the absolute value signs are unnecessary.
Because of the probabilistic interpretation of the wave function in Eq. (2.4),
it is suggestive to interpret p as a kind of density of classical particles on
configuration space. In terms of p, the equation of evolution for 4 is simply
the continuity equation,

op(x, t” 0
i(x,,—)+— Lo(x, t")v(x,1")]1=0 (2.9)
ot ox

where in more than one dimension the x derivative is a divergence, and
where the velocity field v is given by

0H(x, p,t")

> (2.10)

v(x, 1") =

with p set equal to dS(x, ¢")/0x. Since the amplitude transport equation for
p or A involves S [through the velocity field v(x, ¢")], it is necessary to
solve the Hamilton—-Jacobi equation first for S, and then to use this
solution in the amplitude transport equation to solve for p or A.

We will spend the next section preparing for the solution of the
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Hamilton—Jacobi equation. This is a standard topic in most texts on classi-
cal mechanics, although it is poorly explained in many of them. For exam-
ple, it is almost never mentioned that the existence of global solutions of
the Hamilton—Jacobi equation depends critically on whether the classical
motion is regular or chaotic. We will be especially interested in a geometri-
cal interpretation of the solutions of the Hamilton-Jacobi equation, which
is intimately connected with the concept of Lagrangian manifolds. This is
an important concept, without which multidimensional WKB theory and
semiclassical mechanics cannot properly be understood. We therefore turn
now to a discussion of Lagrangian manifolds and the manner in which they
emerge from WKB theory. Once this is completed, the solution of the
Hamilton—Jacobi equation will be almost immediate.

3. LAGRANGIAN MANIFOLDS AND THE HAMILTON-JACOB!
EQUATION

Let us return to the initial action function Sy(x) and its associated
momentum field,
0S,(x)
Ox

p=polx)= (3.1)

which can be viewed as a vector field on the f-dimensional configuration
space at the initial time ¢. It is useful to think of this field as representing
the initial momenta of a swarm of particles; as we shall see, the initial
density of these particles should be interpreted as being po(x) = |Aq(x)|%
This initial momentum field is also associated with an initial velocity field,

o(x) = @’;—;ﬂ (3.2)

with p set to 05,(x)/0x. This swarm of particles and the associated vector
fields constitute the classical or semiclassical interpretation of the initial
action function in configuration space.

When viewed in the 2f-dimensional phase space, the initial swarm of
particles lies on an f-dimensional surface, since Eq. (3.1) constitutes f inde-
pendent constraints on the 2f variables (x, p). See Figs. 1 and 2, in which
this surface, denoted L, is illustrated for one and two degrees of freedom.
For two degrees of freedom, some imagination must be used to visualize
the 2-dimensional surface embedded in the 4-dimensional phase space. The
surface L, is the graph of the function p = p,(x), i.e., the set of points in
phase space of the form (x, py(x))-

The f-dimensional surface created in this manner is not arbitrary, but
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’ (x,x pO(x ,))

Ly

4

X

Fig. 1. The initial Lagrangian manifold py(x)= 0S,/éx in one dimension is just a curve.

rather satisfies certain differential constraints, due to the fact that the
momentum field py(x) is the gradient of a scalar (namely S,). That is, we
have

0po;(x) _ 0p0j(x)
Ox; Ox;

i i

(3.3)

for i, j=1,., f. We will call a momentum field satisfying Eq. (3.3)
“curl-free.”

We will define a Lagrangian manifold momentarily, but it turns out
that any f-dimensional surface created as the graph of a curl-free momen-
tum field is, in fact, a Lagrangian manifold. The converse is not quite true;
there exist Lagrangian manifolds for which p cannot be expressed as a

Py 1)

P = py(x)

* (X', po(x’))

X2

X1

Fig. 2. The initial Lagrangian manifold py(x) =VS,(x) in two degrees of freedom. Note that
L, is 2-dimensional surface in a phase space of four dimensions.
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function of x, or for which the derivatives in Eq. (3.3) diverge or are
undefined. Because of these exceptional cases, we cannot take Eq. (3.3) as
a definition of a Lagrangian manifold.

The actual definition of a Lagrangian manifold involves the symplectic
form, denoted ®, which is an antisymmetric, bilinear operator acting on
vectors in phase space.'” If we let 3z, = (8q,, dp,) and 6z, = (8g,, 5p,) be
two small displacements in phase space, then the action of the symplectic
form on them is defined by

w(0zy, 6z,) = dp; - 6q, — Op, - g, (3.4)
or, in matrix form,
w(dz,,8z,) =08z, - J ' bz, (3.5

where J is the unit symplectic matrix,

J=<_OI g) (3.6)

The matrix J is antisymmetric and orthogonal, so J'=J '= —J. Note
that only two vectors are involved in the definition of the symplectic form,
no matter how many dimensions in the phase space. In one degree of
freedom, the symplectic form measures the area of the parallelogram
spanned by the vectors; in higher degrees of freedom, the symplectic form
may be used to define phase space area for 2-dimensional subspaces. The
symplectic form is invariant under canonical transformations, in the sense
that the value of the right side of Eq. (3.4) is independent of the canonical
coordinates used to compute it. Indeed, perhaps the best definition of a
canonical transformation is as a transformation which has this property for
all vectors 0z, dz,.

We now define a Lagrangian manifold as a f-dimensional surface L in
the 2f-dimensional phase space such that at all points (x, p) on L and for
all vectors 0z, 6z, tangent to L at (x, p), we have (Fig. 3)

w(8zy, 62,) =0 (3.7)

That is, a Lagrangian manifold is a null surface of dimensionality f, in the
sense of the phase space geometry engendered by the symplectic form w.
Let us examine some of the consequences of this definition. To begin,
in one degree of freedom, a Lagrangian manifold must be a 1-dimensional
surface, i.e.,, a curve, in the 2-dimensional phase plane. (See Fig. 4.)
Furthermore, since all tangent vectors dz = (dx, dp) at a given point on any
curve in a plane are linearly dependent, the antisymmetry of the symplectic



16 Littlejohn

P 1%}

X

Fig. 3. An f-dimensional surface L in phase space is a Lagrangian manifold if the symplectic
area spanned by any two tangent vectors z,, 6z, at any point of the surface is zero. It is a
null surface in the symplectic geometry.

form guarantees that w(dz,, 6z,) always vanishes. Therefore all curves
in the 2-dimensional phase plane are Lagrangian manifolds, ie., the
Lagrangian condition imposes no constraints at all in one degree of
freedom. The concept of a Lagrangian manifold is really only needed for
multidimensional problems.

Another consequence of the definition is that the surfaces x = const or
p =const, in any number of degrees of freedom, are Lagrangian manifolds,
because one or the other of the increments dg, op in Eq. (3.4) is zero. In
particular, both configuration space and momentum space, conceived of as
subsets of phase space, are Lagrangian manifolds. These statements
generalize to any set of canonical coordinates, because the value of the

3z,

Fig. 4. In one degree of freedom, all tangent vectors 4z at a point of a curve are linearly
dependent, so all curves in the phase plane are Lagrangian.
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symplectic form of Eq. (3.4) is invariant under canonical transformations.
Conversely, one can show that every Lagrangian manifold is a constant-g
or constant-p surface in some set of canonical coordinates. It is suggestive
to think of a Lagrangian manifold as a surface in phase space which is
completely “g-ish;” such a surface is also completely “p-ish,” because g and
p can be interchanged by the canonical transformation P=g¢, Q0 = —p. The
point is that a Lagrangian manifold does not, in a sense, have any cross
g-p behavior.

A third consequence of the definition is that the graph of any curl-free
momentum field, p=p(x), is, in fact, a Lagrangian manifold. To see this,
note that any vector 6z = (dx, dp) tangent to the surface p = p(x) satisfies
a constraint connecting its x and p components, namely,

p,
5p,-=zb—i—5xj (3.8)

J 7
Substituting this into Eq. (3.4) and using the symmetry of dp,/0x;, we
easily find that w(éz,, dz,)=0.

One of the conditions on a Lagrangian manifold is that it should have
dimensionality f, one half of the dimensionality of the phase space. But null
surfaces of other dimensionalities also exist, i.e., surfaces whose tangent
vectors satisfy Eq. (3.7). Such surfaces are called isotropic (the terminology
bears no relation to the usual meaning of this word in physics), and are
also sometimes important in classical and semiclassical mechanics. There is
a limit, however, on the dimensionality of such surfaces: it cannot exceed
/. because it turns out that the maximum number of linearly independent
vectors which can be pairwise annihilated by the symplectic form is f.

More precisely, if we are given f linearly independent phase space
vectors X,..., X, (the subscripts distinguish the vectors, and are not com-
ponents) such that w(X,, X,)=0 for k,/=1,.., f, and another vector Y
such that o(Y, X,)=0 for k=1,.., f, then ¥ must be a linear combination
of the X’s. To prove this, consider the two sets of f vectors (X},..., X,) and
(JXi,.., JX,), where J is given by Eq. (3.6). The first set is linearly inde-
pendent by hypothesis, and the second set is linearly independent because
J is nonsingular. Further, every vector of the first sct is perpendicular to
every vector of the second, because w(X,, X;,)= — X, - (JX,) =0. Therefore
the two sets span perpendicular subspaces of dimensionality f, and together
span the 2f-dimensional space of all possible tangent vectors in phase
space. If now w(Y, X,)=0, then Y is perpendicular to all the JX,, and
must therefore lie in the subspace spanned by the X,. This proves the
theorem. As a result of this theorem, we can characterize a Lagrangian
manifold as an isotropic manifold of maximum dimensionality (namely f).

822/68/1-2-2
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3.1. Lagrangian Manifolds and Caustics

We have just shown that the graph of a curl-free momentum field is
always a Lagrangian manifold in phase space. The converse is not quite
true, because many Lagrangian manifolds contain points at which the
derivatives in the curl-free condition, Eq. (3.3), are not defined. Such points
are associated with caustics, and are therefore important in WKB theory.
We will now examine the conditions under which the derivatives of
Eq. (3.3) are not defined, and thereby clarify the geometrical meaning of
caustics.

Since Lagrangian manifolds are f-dimensional, it is always possible to
impose f coordinates, say (u,,..., u;), on one of them. It is an implication of
the word “coordinate” that the u’s provide a unique labeling of points on
the manifold, which we assume to be smooth. Therefore the two
f-dimensional vectors x and p can be regarded as functions of u on the
Lagrangian manifold, x = x(u), p=p(u), and these functions are smooth,
Now it may or may not happen that the f variables x are locally invertibie
functions of u; the condition for invertibility is that the determinant of the
Jacobian 0x/du should not vanish. If this condition is satisfied, we can write

=u(x), and then by substitution, p(x)=p(u(x)). In this way, p becomes
a function of x on the Lagrangian manifold when the determinant of dx/du
does not vanish. On the other hand, if we approach a point of a
Lagrangian manifold at which the determinant of dx/0u does vanish, then
the matrix occurring in Eq. (3.3),

;i _ 5 Op: Ot (3.9)
ox; ¢ Ouy Ox;

must behave badly. In one dimension, it can do so only by diverging, since
the derivative dp/du must be nonzero when dx/du is zero; in higher dimen-
sions, its behavior may be more complicated, since some of the eigenvalues
of dp/0u may vanish at the same place that some of the eigenvalues of
0x/du also vanish.

The set of points on a Lagrangian manifold where the determinant of
Ox/du is zero is called the singular set, and the points of configuration space
which lie directly below them are the caustic points. We will use somewhat
loose terminology and refer to points of either kind as caustic points. The
geometrical meaning of this condition, as illustrated in Fig. 5, is that the
projection of the Lagrangian manifold onto configuration space has an
edge at a caustic point, or, as is commonly said, the projection is singular
there. One can also see that the f-dimensional tangent plane to the
Lagrangian manifold at the caustic point is “vertical” in one or more of its
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1)
Py

2)

N
s

Xy

Fig. 5. The singular set is the set of points (x, p) on the Lagrangian manifold at which the
tangent plane becomes “vertical” to configuration space in one or more of its directions.
A configuration point x below the singular set is a caustic point.

dimensions, i.e., that there exist vectors in this tangent plane which are
annihilated when projected onto configuration space.

These facts are fairly clear geometrically, but it is worthwhile to also
examine them analytically. A small phase space vector dz = (Jdx, ép) which
is tangent to the Lagrangian manifold can be conveniently described by its
displacement du in the u coordinates, i.e., dx = (dx/0u) éu, op = (Op/0u) du.
If the matrix dx/du is singular, then there exist nonzero displacements du
such that dx=0. For these displacements, the phase space vector z has
vanishing components in its x components, and is therefore annihilated
upon projection onto configuration space. It is convenient to designate the
corank of the matrix dx/0u as the order of the caustic; this is the number
of linearly independent null eigenvectors du, and therefore the number of
directions in which the tangent plane is “vertical.” Usually caustics will be
first order, but they may go as high as the fth order. A caustic of order f
is a focus.

Note that the definition of the singular set and the order of the caustic
are independent of the coordinates u imposed on the Lagrangian manifold,
since the rank of a matrix does not change under coordinate transforma-
tions.

In one degree of freedom, a caustic is simply a place where the
derivative dp/dx of the curve is infinite (see Fig. 6). If the Lagrangian
manifold is an orbit of a particle, then the caustic will also be a turning
point, ie., a place where x=0; but, as we shall see, in time-dependent
problems, the Lagrangian manifold at given time need not be the trace of
an orbit, and, in such problems, caustics do not occur at turning points.
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(x.p)

* X
X

Fig. 6. In one degree of freedom, a caustic occurs where the slope dp/dx of the Lagrangian
manifold is infinite. It is not necessarily a turning point.

3.2. Lagrangian Manifolds Project onto Curl-Free
Momentum Fields

We will now show that if a region of a Lagrangian manifold which is
free of caustics is projected onto configuration space, so that Eq. (3.3) is
meaningful, then the resulting momentum field is curl-free. This is the best
converse we can make of the result proved above, that the graphs of curl-
free momentum fields are always Lagrangian manifolds.

To do this, we apply Stokes’ theorem to the symplectic form,
integrating it over a 2-dimensional surface in the 2f-dimensional phase
space, and relating the result to a line integral over the boundary (see

1%
Py

2D
surface

X2

X1

Fig. 7. The integral of the sympilectic form over a 2-dimensional surface in phase space is
equal to the contour integral of p dx around the boundary. The line integral can be viewed
either in phase space or via its projection onto configuration space. Note that the integral is
always taken over a 2-dimensional surface, regardless of the dimension of the phase space.
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Fig. 7). (The surface is 2-dimensional, not f-dimensional; it is generally not
a Lagrangian manifold itself.) The result can be written

f w= p dx (3.10)

urface Boundary

The meaning of this equation is the following. To interpret the left side, we
imagine imposing a coordinate system (a, ) on the 2-dimensional surface,
so that the f-dimensional vectors x, p are functions of («, §) on the surface.
Then the meaning of the surface integral in Eq. (3.10) is

j w=jdadﬁz<?—’ﬁ%—%%> (3.11)

One can see that the integrand on the right is simply w acting on two
vectors tangent to the surface,

urface

_(%x % _(Z
521—<6a’8a>’ 522—<0ﬁ’6ﬁ> (3.12)

which is the reason for the notation | w in Eg. (3.10).

The line integral on the right side of Eq. (3.10) can be viewed
geometrically either as a line integral in phase space, in which both x
and p are functions of some parameter along the boundary, or via the
projection of the curve onto configuration space, in which p is a function
of position x along the projected curve there.

The proof of Eq. (3.10) proceeds in the usual way for Stokes’ theorem,
by breaking the region into small pieces, and demonstrating the result for
each piece separately. On adding up the pieces, facing boundaries cancel.
Equation (3.10} is valid for any closed curve in phase space serving as a
boundary for a 2-dimensional surface, so long as x and p are smooth and
well-defined in a neighborhood of the surface. In particular, the curve need
not be the orbit of a physical system. (One must be careful, however, in
applying the theorem to action-angle variables, which have discon-
tinuities. )

To return to Eq. (3.3), we consider a Lagrangian manifold or a region
of one which has no caustics, as illustrated in Fig. 8, so that p is a single-
valued, smooth function of x in the projection. We construct a closed curve
on the Lagrangian manifold in such a way that the 2-dimensional surface
bounded by the curve can also be chosen to lie on the Lagrangian
manifold, as shown in the figure. Then the surface integral of Eq. (3.10)
vanishes, and therefore the line integral of p dx around the closed loop in
phase space must also vanish. This also applies to the integral of p(x) dx
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p
P >
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Fig. 8. On integrating p dx around the boundary of a 2-dimensional region confined to a
Lagrangian manifold, the result is zero. The momentum field p = p(x) resulting from the
projection of a Lagrangian manifold onto configuration space is a perfect gradient.

X1

in the configuration space projection. Therefore integrals of p(x) dx along
open contours in configuration space must be invariant under continuous
deformations of path, and must be functions only of the endpoints. This
means that there exists a function S(x) such that p(x)=0S(x)/dx, namely,

sm:jx p(x) dx (3.13)

in which the lower limit is arbitrary. In this way we see that caustic-free
regions of a Lagrangian manifold always project onto curl-free momentum
fields, which was to be proved.

3.3. Generating Functions of Lagrangian Manifolds

We will call any function S(x) which satisfies p = p(x)=0S/dx on a
Lagrangian manifold a generating function-of that Lagrangian manifold.
This is not universal terminology, but it is convenient and reasonable.

Let us consider to what extent a generating function and a Lagrangian
manifold uniquely specify one another. To begin, if we are given a
Lagrangian manifold, a generating function is not even defined uniess we
avoid caustic points. Supposing that a region of the Lagrangian manifold
can be found which has no caustic points, then Eq. (3.13) shows that the
generating function is unique up to an additive constant. This additive con-
stant is usually associated with phase conventions in semiclassical applica-
tions. On the other hand, if the Lagrangian manifold has caustics, such as
those illustrated in Figs. 9 and 10, then we can divide the Lagrangian
manifold into regions which extend up to the caustics and which are
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(x, p2(x))

"

— 1 p(x)

X

Fig. 9. The existence of caustic points on a Lagrangian manifold usually leads to a multi-
valued momentum field, p = p,(x), here illustrated in one degree of freedom for b=1, 2.

separated by the caustics. Then each region corresponds to a distinct
branch of the momentum field, p = p,(x), which is now multivalued, and
each branch has its own generating function, S,(x), where 4 is a branch
index. Each generating function S,(x) is determined to within its own
additive constant, although it is usually convenient to link some or all of
the additive constants together by demanding that the different functions
S,(x) approach one another at the caustics dividing the branches. This is
equivalent to defining an action function S(x, p) on the Lagrangian
manifold itself, as the line integral of p dx along a contour confined to the
Lagrangian manifold and taken relative to an arbitrary initial point, as
shown in Fig. 11. This function then becomes multivalued upon projection,
ie., we have S,(x)= S(x, p,(x)).

1%)

P1
(x,pp)

X2

X1

Fig. 10. Multiple branches p ,(x), ps(x) of the momentum field in two degrees of freedom.
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P

Xy

X1

Fig. 11. An action function S(x, p) can be defined at phase space points on a Lagrangian
manifold as the integral of p dx along a contour confined to the Lagrangian manifold, relative
to an initial point (x4, po). This action function becomes multivalued upon projection onto
configuration space, but is continuous at caustics.

Even the function S(x, p) on the Lagrangian manifold in phase space
will be multiple-valued, if the manifold has a nontrivial topology. This has
nothing to do with caustics, but rather the fact that sometimes a given final
point of a Lagrangian manifold can be reached by more than one topologi-
cally distinct path leading from the given initial point. This occurs with the
invariant tori of integrable systems, and also in the neighborhood of
unstable periodic orbits of chaotic systems. Lagrangian manifolds which
are topologically nontrivial do not normally occur in the Van Vleck
formula.

Some Lagrangian manifolds consist entirely of caustic points, such as
the surface x = x, = const, illustrated in Fig. 12. Such Lagrangian manifolds

b

x=x0

Fig. 12. An example of a Lagrangian manifold which has no x-space generating function
S(x), since it consists entirely of caustic points.
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do not have a generating function S(x), although we will show momen-
tarily that they do have generating functions with respect to other
coordinate systems. These Lagrangian manifolds are important in the
semiclassical theory of the propagator, as we shall see.

Incidentally, Eq. (3.3) gives us another reason why all curves in the
2-dimensional phase plane are Lagrangian: it is because all functions p(x)
in one dimension are perfect gradients.

Although the definition of a Lagrangian manifold, Eq. (3.7), is for-
mulated in such a way as to be invariant under canonical transformations,
the generating function S(x) is specific to the x-representation. Everything
we have done with the generating function S(x), however, can be carried
over to any generalized coordinate (, which is part of some canonical
coordinate system (Q, P). This will give a new generating function
S(Q)=[ P(Q)dQ, in which P is determined as a function of Q by
projecting the Lagrangian manifold onto Q-space. (Even in the case of
nonlinear coordinates, we project onto Q-space simply by throwing away
the P coordinates.) In general, there will again be caustics, which will occur
where the matrix 6Q/0u is singular; however, these singularities will usually
not occur at the same points on the Lagrangian manifold at which dx/du
is singular. That is, the singular set is determined relative to the representa-
tion being used.

For example, under the canonical transformation Q=p, P= —x, we
have

5= P do=3(p)= [ xp)dp (3.14)

Notice that we are now dealing with a vector field x(p) on momentum
space, which will satisfy a version of Eq. (3.3) with the roles of x and p
swapped. If the initial points for the x- and p-space integrals are the same
point (x,, po), as illustrated in Fig. 11, then the old and new actions are
related by

S(p) = S(x) ~ xp + X Po (3.15)

However, S(p) may be defined even when S(x) is not; for example,
the Lagrangian manifold of Fig. 12, although it has no configuration-
space generating function, does have the perfectly nice momentum-space
generating function, S(p)= — x, p.

The fact that the locations of caustic points are relative to the
representation being used is important in WKB theory, for it allows one to
avoid caustics by changing representation. For example, in one degree of
freedom it is geometrically obvious that configuration-space caustics and
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N

Fig. 13. In one degree of freedom, configuration-space caustics and momentum-space
caustics never occur at the same place. Even in higher degrees of freedom, there always exists
a representation in which a given point is caustic-free.

momentum-space caustics never occur at the same places on a Lagrangian
manifold, as illustrated in Fig. 13. In higher degrees of freedom, this may
no longer be true, as for example with the Lagrangian manifold specified
by x, =a=const, p,=b=const in the (x,, x,, p,, p,) phase space. Every
point of this Lagrangian manifold is simultaneously on a configuration-
space caustic and a momentum-space caustic. If, however, we perform
a canonical transformation in which (Q,, @,)=(p;, x,), then in the
QO-representation, the Lagrangian manifold is caustic-free. Maslov has
shown that by using a representation involving some mixture of com-
muting x’s and p’s, it is always possible to avoid caustics. The proof is
notationally awkward, but not difficult. This leads to another fact, also
geometrically obvious in one degree of freedom, that every Lagrangian

Fig. 14. A Lagrangian manifold can always be covered by overlapping regions such that
each region is caustic-free in some representation.
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manifold can be covered by overlapping regions, such that every region is
caustic-free in some representation obtained from a commuting mixture
of x’s and p’s. See Fig. 14, in which regions A and C are caustic-free in
the x-representation, while regions B and D are caustic-free in the
p-representation.

3.4. Generating Functions of Canonical Transformations

The generating functions of classical mechanics, which are used to
generate canonical transformations, are only a slight generalization of the
generating functions of Lagrangian manifolds we have introduced here. We
have been discussing the generating function for a specific Lagrangian
manifold, such a would arise in WKB theory when dealing with a specific
wave function. On the other hand, a whole family of wave functions,
such as a complete set of eigenstates of some complete set of commuting
observables, will produce a whole family of Lagrangian manifolds,
parametrized by some set of parameters A = (4,,..., 4,). There will in general
be f of these parameters for a system of f degrees of freedom, for reasons
explained in ref. 7. In this way, the family of wave functions of WKB form
is associated with an action function S(x, 1).

The geometrical picture corresponding to S(x, 4) is shown in Fig. 15,
in which phase space is divided up into an f-parameter family of
f-dimensional Lagrangian manifolds. The parameter A indicates which
Lagrangian manifold we are on, and p(x, 1) = 65/0x is the momentum field
(possibly multivalued) associated with it. In quantum mechanics, the
parameter 4 may be restricted to discrete values, but in classical mechanics

7 P2
A=A,
7&=7\.2
7\,27\.3
X
X1

Fig. 15. A foliation of phase space into an f-parameter family of f-dimensional Lagrangian
manifolds. Such a foliation corresponds to a canonical transformation, once a parameters 4
of the Lagrangian manifolds are chosen and identified with some set of commuting new Q’s
and P’s.
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it is allowed to be continuous, so that an entire 2f-dimensional region of
phase space (perhaps all of it) is filled by the family of Lagrangian
manifolds. Such a division of a space into a family of lower dimensional
surfaces is called a foliation; an individual surface itself is called a leaf. The
parameter 4 may be allowed to be an arbitrary label of the Lagrangian
manifolds, except that it should provide a unique specification for the
members of the family.

The function S(x, 1) is essentially one of the generating functions of
canonical transformations in classical mechanics. To see this, note first that
any given point of phase space (x, p) must lie on one leaf of the foliation,
so the function A= A(x, p) is uniquely specified. Therefore the A’s can serve
as one half of a new coordinate system on phase space. Further, the
Lagrangian condition implies that the Poisson brackets of the 1’s among
themselves vanish, {1, 4,} =0, so 4 can be identified with either the Q or
P of a new canonical coordinate system. The proof of this fact proceeds as
follows. Because the Lagrangian manifolds are contour surfaces of all the
A’s, we have X-VA,=0, k=1,., f, for any vector X tangent to the
Lagrangian manifold. (The operator V is a phase space gradient.) This can
be written

0=X.Vi,=X.J7J.Vi,=w(X,IVi,) (3.16)

This is true for any of f linearly independent vectors X tangent to the
Lagrangian manifold. Therefore the vectors J VA, k= 1,..., f, must also be
tangent to the Lagrangian manifold, because the maximum number of
linearly independent vectors which are pairwise annihilated by o is f.
Therefore the symplectic form acting on any pair of the JVAi,.’s must
vanish. But this can be written in terms of the Poisson bracket,

(I Vi, IVA)=Vi, - JI 1.V,

It does not matter whether we identify the A’s with the Qs or P’s of
a new coordinate system, or even with some mixture of commuting Q’s and
P’s. But to be specific, let us take A=Q. Then the generating relation
p(x,0)=0S8(x, Q)/0x is clear on the basis of our whole development; the
other generating relation P(x, Q)= —dS(x, Q)/0Q serves as a definition
of P, and is designed so as to make the formula for the symplectic form,
Eq. (3.4), appear the same in both the old and new coordinates. That is,
one demands the equality of the integrals,

§pdx=§PdQ (3.18)

for all closed contours in phase space.
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We have constructed here the Goldstein'”-type F (g, Q) generating
function; the type F,(g, P) generating function is really the same, except the
labels A of the Lagrangian manifolds of the foliation are considered to be
P’s instead of Q’s. The other two types, F5(p, Q), F,(p, P) are computed
by projecting the Lagrangian manifolds of the foliation onto p-space,
instead of onto g-space, and thus they bear the same relation to F, and F,
that S(g) does to S(p) in Eq. (3.15). Books on classical mechanics some-
times discuss the fact that not every canonical transformation has a
generating function, such as the identity transformation, Q=g¢, P=p,
which does not have an F,(g, Q) generating function. The reason for this
geometrically is the existence of caustics; for example, the identity transfor-
mation corresponds to a family of Lagrangian manifolds g = Q, where Q is
interpreted as the parameter, which breaks phase space up into a family of
vertical lines. See Figs. 12 and 16.

A really satisfactory geometrical interpretation of generating functions
and their role in semiclassical mechanics would involve a more symmetrical
treatment of the old and new variables than we have taken here. From a
classical standpoint, this involves working in a kind of doubled phase
space, where the differential of the action is p dg— P dQ, as discussed in
Abraham and Marsden.""®) From a quantum or semiclassical standpoint, it
is necessary to recognize that a wavefunction y(q), which is parametrized
by parameters 4=, might better be written (g, @) or even {g|Q >, and
that it really satisfies two Schrodinger equations, one in the g variables,
and one in the Q variables. This point of view has been developed in an
elegant analysis by Miller,""" and is discussed more fully in ref. 7.

Qo 01 ©2

Fig. 16. The identity canonical transformation Q =g, P=p is associated with a foliation of
phase space into vertical Lagrangian manifolds, labeled by the values of Q.
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3.5. Solving the Hamilton-Jacobi Equation

Let us now see how the theory of Lagrangian manifolds can be
applied to the Hamilton—Jacobi equation. Consider Fig. 17, in which
an initial Lagrangian manifold L' is obtained from the initial action
S(x', 1) = So(x’) by

88(x', t')

Polx') =l 1) ===
X

(3.19)
We assume the initial Lagrangian manifold is free of caustics, so that py(x’)
is a single-valued momentum field. Now we let each point of the initial
Lagrangian manifold, such as (x’, p’) in the figure, flow according to
Hamilton’s equations, thereby mapping the initial Lagrangian manifold L’
into a final, f-dimensional manifold L”. It turns out, as we will show
momentarily, that L” is also Lagrangian. Therefore, if L” is free of caustics,
it also has a generating function, which we may write as S(x”, t”). For
many problems the final Lagrangian manifold will be free of caustics for
short elapsed times 7" —1’, because only small changes in topology will
occur in small times. If, however, L has tails which extend to infinity, then
it may be that caustics will develop far out on the tails in arbitrarily short
times. For simplicity, we will assume for now that L” has no caustics.

It is then a reasonable guess that S(x”, "), with suitably chosen
additive constant, is the solution of the Hamilton—Jacobi equation,
Eq. (2.6). This is true, but there are several steps involved in the proof.

The first is to show that Lagrangian manifolds are always mapped
into other Lagrangian manifolds under the time flows generated by

14

(x ”,p ”)

LII

L/

T —_—

'
'
'
'
'
+
’ ”
X

Fig. 17. An initial Lagrangian manifold L' at time ¢’ is mapped into a final Lagrangian
manifold L” at time ¢” by following orbits. The solution of the time-dependent Hamilton—
Jacobi equation is a generating function of the final Lagrangian manifold.
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Hamilton’s equations. This follows immediately from a basic fact about the
symplectic form, illustrated in Fig. 18. We consider an initial condition
(x', p') in phase space, and an orbit taking it to (x”, p”) in elapsed time
t"—t'. Two small displacements 0z}, dz5, going from (x’, p’) to initial
conditions for two nearby orbits, are mapped under the flow to final
displacements dz{, dz;. We use the linearized equations of motion to
describe the evolution of the displacements. It then turns out that

w(dz], 0z5) = w(dz], 6z; (3.20)

giving us a sense in which the symplectic form is conserved in time.
This is equivalent to the fact that the solution to Hamilton’s equations,
expressing the final ¢’s and p’s as functions of the initial ¢’s and p’s at fixed
time, constitute a canonical transformation. If now the initial conditions
(x', p') lic on an initial Lagrangian manifold, and if 6z}, Jz5 are tangent to
it, then the left side of Eq. (3.20) vanishes. But then 4z], dz3 are tangent
to the final manifold, which must therefore also be Lagrangian.

Therefore L” has a generating function, determined to within an
additive constant. Not just any constant will do, however, because S(x”, ")
must satisfy both the Hamilton-Jacobi equation and the initial conditions.
It turns out that the solution we want is given by

S(x", 1")=S(x', )+ R(x", 13 X', 1') (3.21)

where R is Hamilton’s principal function, ie., the line integral of
p dx — H dt along an orbit connecting (x', ¢') with (x”, t”).

Dy Py
dz% (x ”,p ”)
bz oz

’ 7 621’
@x.p")

Xy

Fig. 18. When a pair of small displacements is mapped along an orbit by the linearized
equations of motion, the symplectic form acting on them is constant in time.
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To prove this, we must first be careful about the functional
dependences of the symbols we have used. The times ¢, " can be specified
independently, as can the final point x” at which we wish to evaluate the
action. Given these, however, the initial point x’' is determined. The rule
for the function x’'=x'(¢, 1", x") is the following. Given x”, we find the
momentum p” which lies on the final Lagrangian manifold above x”. We
then follow the orbit ending at (x”, p”) at time ¢” backward to (x', p')
at time ¢. The x’ value of this initial condition is then the function
x'(t, t", x"). Finding the final momentum p”, given x”, is easy to say and
is clear geometrically, but in practice one usually must search initial condi-
tions (x', p') for an orbit which ends at coordinate x” at time ¢".

Direct substitution now verifies that S(x”, t) from Eq. (3.21) does
satisfy the Hamilton-Jacobi equation. First we differentiate with respect to
x", obtaining

oS(x", 1") _0S(x, t) Qx_’ a_RQx_’ 8_R
ox"  ox  ox"  ox' ox"  ox”

(3.22)

But, because dS(x’,t")/0x'=p’ and OR/Ox'= —p’, the first two terms
cancel, while the last term gives p”. Therefore

O8CL)_ (323)
ox"
This shows that S(x”,¢") defined by Eq. (3.21), which must in any case
generate some Lagrangian manifold, in fact generates the final Lagrangian
manifold which is the image of the initial Lagrangian manifold under the
time evolution.
Similarly, differentiating Eq. (3.21) with respect to 1" yields

B e, o) (3.24)
ot”
with two terms again canceling. This shows that S(x”, t”) actually does
satisfy the time-dependent Hamilton—Jacobi equation.

Finally, we note that as ¢” — ¢/, the R term in Eq. (3.21) goes to zero
and S(x”, t") - S(x’, '), because the integral of L dt = p dg — H dt, where L
is the Lagrangian, along a zero-length orbit is zero. Therefore S(x”, ")
satisfies the required initial conditions, and it is the solution we seek.

An interesting interpretation of this solution is obtained by endowing
the particles of our swarm, introduced earlier, with an action S in addition
to their position and momentum (x, p). The initial action is S(x’, '),
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and as time evolves, each particle accumulates action by integrating
Ldt=pdg— Hdt The action S(x”, t") at a final point x” is then simply
the action of whatever particle ends up there.

4. AMPLITUDE TRANSPORT, CAUSTICS,
AND THE MASLOV INDEX

To complete the solution of the initial value problem in WKB theory,
we must now solve the amplitude transport equation, Eq. (2.9). This is
just the continuity equation, which we will interpret as representing con-
servation of particles of density p =|A|% Thus, we can immediately write
p(x", t")dx" =p(x', t') dx’, as illustrated in Fig. 19, or, by taking square
roots,

’

a 1/2
A(x", 1") = A(x', 1') deta—;c7 (4.1)

The expression dx'/0x” is the derivative of the function x'(¢', ¢, x") dis-
cussed below Eq. (3.21); it is neither a derivative at fixed p’ nor at fixed p”,
since as x” changes, both p’ and p” move along their respective Lagrangian
manifolds. Collecting things, we can now write the solution to the initial
value problem in WKB theory in the form

’

det 57

1/2

Y(x", t")=A(x", t")

exp {é [S(x', ¢') + R(x", t"; X', l')]} (4.2)

For short elapsed times, the absolute value signs in Eqgs. (4.1) and
(4.2) are not necessary, since at ¢ =1, we have det 0x'/0x” = + 1. For such

p

' T ]
s
$ —b x

”

x' x'+dx’ x” x"4dx”

Fig. 19. The number of particles between x' and x'+dx’ is the same as between x” and
x" 4 dx". This leads to an immediate solution of the amplitude transport equation.

822/68/1-2-3
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times the amplitude A(x”, t”) remains real and positive. At longer times,
the determinant may change sign—not, as it turns out, by passing through
zero, but by diverging. To examine this question, it is better to look at the
inverse matrix, dx”/0x’, which is always finite. To see this, note first that x’
uniquely labels points on the initial Lagrangian manifold, since we assume
it has no caustics. Therefore we can treat x” as coordinates on L’, and iden-
tify x" with the u coordinates introduced in Eq. (3.9). By carrying this coor-
dinate system along with the Lagrangian manifold as it evolves, x' can also
be used as coordinates at any later time. Then the finiteness of dx”/dx’ is
merely a reflection of the fact that L” is smooth and well behaved (as we
assume).

On the other hand, the quantity det dx”/0x’ may vanish, signaling a
caustic of L”, precisely as in Eq. (3.9). This is illustrated in Fig. 20, where
orbit ¢ has reached a caustic of L” at the final time ¢”. In the same
diagram, orbit b has not yet reached a caustic at the final time, whereas
orbit ¢ has already passed through one; the respective derivatives Jx”/0x’
(in one degree of freedom) for orbits b, a, ¢ are positive, zero, and negative.

A common misconception about caustics is that they are somehow a
property of a single orbit, taken out of context. In fact, a caustic is only
determined by a family of orbits, which are always associated with a
Lagrangian manifold. For example, the same orbit ¢ in Fig. 20 would not
be at a caustic at time ¢” if the initial Lagrangian manifold were modified
[leaving (x', p') alone].

Equation (4.2) shows that the WKB expression for the final wave
function Y(x”, ¢") diverges when x” is at a caustic. Since nonlinear partial
differential equations typically develop singularities in finite time, this

14

L ”

’ ”

X X

Fig. 20. Orbit a, starting at x', has reached a caustic at x”. Orbit b has not yet reached a
caustic at the final time, while orbit ¢ has passed one.
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behavior is not surprising. The divergence represents a nonuniformity in
the variables (x”, ¢t”) of the expansion of ¥ in %, i.e., although the error in
W goes to zero like # as # — 0 for fixed (x”, t”), it goes to oo for fixed # as
(x”, t") approaches a caustic.

What is more surprising is that an almost obvious continuation of the
solution through the divergence is valid (in the sense of an asymptotic
expansion in #), even though the solution near the caustic is not. The
obvious part is to take the prescription surrounding Eq. (3.21) literally,
even for orbits which have passed through caustics; the only change is that
the function x'(¢/, ¢, x") is now multiple-valued, corresponding to possibly
several orbits which reach x” in the allowed time from the initial
Lagrangian manifold (but with different values of x', p’, and p”). This is
illustrated in Fig. 21.

As for the amplitude, let us assume that det dx”/0x’, which was
initially + 1, passes through zero and goes negative at the caustics. Then it
is logical to interpret the square root in Eq. (4.1) as giving an imaginary
result after the first caustic has been passed; by convention, we will force
A(x", 1"} to be positive, absorbing the imaginary unit into a phase factor.
The only part that is not obvious is whether the phase factor should be —i
or +i; we will write it as exp(—ixn/2), with k an integer yet to be deter-
mined. As more caustics are passed along an orbit, the phase factor will
accumulate, always being representable in the form exp(—ikn/2) for some
integer x. The integer x is variously called the Morse index or Maslov
index; the distinction will be discussed below.

Finally, we interpret the multiple orbits arriving at the same final x”

p

L ”

& p1)

=" py)

LI

N R
=

Fig. 21. After caustics develop, the quantities x’, p’, and p”, all considered functions of
(¢, 1", x"), become multiple-valued, corresponding to distinct orbits arriving at (x”, ¢"). Two
branches are shown, =1, 2.
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point as contributing independent wavelets to the solution, all of which are
to be added together. The result is

i

h

Y(x", 1) =3, Ay(x", 1") exp [ 3
b

S,(x", ") — K, E} (43)

where b is the branch of the function x'(¢, ¢, x"), and where 4,, S,, and
Kk, are determined separately for each branch [now the absolute value signs
in Eq. (4.1) are necessary ].

4.1. Momentum-Space Wave Functions

The plausibility arguments leading to Eq. (4.3) can be strengthened,
and a rule obtained for computing the indices x, by considering momen-
tum-space wave functions. We begin with a configuration-space wave
function consisting of a single term of phase integral form,

Yix) = A(x) exp [% S(x)} (44)

corresponding to a Lagrangian manifold which is free of caustics in
configuration space. We suppose further that the Lagrangian manifold is
free of momentum space caustics, i.e., that either x or p can be used as
coordinates on the Lagrangian manifold, and that x and p are invertible
functions of each other. This is illustrated in Fig. 22. We will write

L R
=

Fig. 22. A Lagrangian manifold which has neither x-space caustics nor p-space caustics. The
stationary phase evaluation of the Fourier transform converts a single branch of a WKB wave
function in the x-representation into another single branch in the p-representation.
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p=p;(x) and x=x,(p) for these functions, using the subscript L to dis-
tinguish functions from values.

Then the momentum-space wave function is given by the Fourier
transform,

1 |
00 =g | 5 A esp (IS ~01} @3)

We evaluate this integral by the stationary phase approximation, because
by so doing we obtain an approximation for ¢ which is of the same order
in # as that we started with for . Note that p is a parameter of the
integral, so the stationary phase points are x values depending on p; they
are the roots of p = .5(x)/0x = p,(x). But by our assumptions, there is only
one such root, x=x,(p). The stationary phase evaluation of the integral
also involves the symmetric matrix M(x) = 02S(x)/dx dx = dp,(x)/0x; this
matrix is finite and nonsingular by our assumption of the absence of
caustics, so its eigenvalues A are real and nonzero. The integral then gives

o) =€ A(x) et M)~ Zexp {1500 ]| (46)

where « is an integer given by the index of inertia of M, defined as the
number of positive eigenvalues minus the number of negative eigenvalues.
On the right side of Eq. (4.6), x is understood to mean x,(p); 4, M,
and S depend on x, but a does not, since if det M neither vanishes nor
diverges, its index of inertia does not change. That is, regarded as a func-
tion of position on the Lagrangian manifold, o is constant.

Notice that like y(x), #(p) also has phase integral form. The momen-
tum-space action is given by

S(p)=S(x)—xp (4.7)
so that it is the momentum-space generating function of the Lagrangian
manifold, precisely as in Eq. (3.15). The momentum-space amplitude

A(p) is conveniently expressed in terms of a momentum-space density
p(p)=A(p)* given by

p(p)=p(x)

det 6—x‘ (4.8)
op

exactly as we would expect for the transformation of a density under a
change of variables. (Here we have written M ~! = dx/dp.) Only the overall
phase exp(iar/4) of Eq. (4.6) might not have been predicted on classical
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grounds, and it is dependent on the usual phase conventions used for the
Fourier transform in quantum mechanics.

A significant fact about these calculations is that the stationary phase
approximation is a semiclassical approximation of the same order in # as
that inherent in the WKB form of the wave functions, and that it is also
interpreted geometrically in terms of Lagrangian manifolds in phase space
and their projections. More generally, any quantum mechanical operation
involving integrals or sums can be evaluated by the stationary phase
approximation, and the error is always of order #. However, the error is
generally nonuniform in other parameters, such as position, time, quantum
numbers, etc.

Let us now modify this calculation by allowing the Lagrangian
manifold to have a momentum-space caustic (but still without any con-
figuration-space caustics), as shown in Fig, 23. Now the stationary phase
evaluation of the integral in Eq. (4.5) produces two stationary phase points
Xy, x, for a given value of p, as shown in the figure, corresponding to the
now double-valued function x,(p). The integral is now expressed as a sum
of two terms, each of the WKB form shown in Eq. (4.6).

The index of inertia of M, regarded as a function on the Lagrangian
manifold, is no longer constant, but rather changes discontinuously at the
momentum-space caustic, where M = dp/0x has vanishing determinant. The
number of eigenvalues of M which vanish at the caustic is the order of the
caustic, and each eigenvalue which passes through zero at the caustic will
change the index of inertia of M by either +2 or —2, depending on the
direction of the change. Therefore the relative phase shift between the two

Fig. 23. A Lagrangian manifold with no x-space caustics and one p-space caustic, at
momentum value p.. A single-branch wave function in WKB form in the x-representation
corresponds to two branches in the p-representation, with a relative phase shift which is an
integral multiple of =/2.
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branches due to the indices of inertia will have the form exp(—ixn/2), for
some integer k. Altogether, the wave function can be written in the form

i

$(p)=e"""*Y 4,(p)exp [h
b

()=, | (+9)

where «, is the index of inertia of one of the branches, whose x is zero;
where k, for the other branch represents the relative phase shift due to the
change in the index of inertia across the caustic; and where S, and 4, are
defined for each branch by Egs. (4.7) and (4.8) [with 4,=(5,)"%] For
example, in the case illustrated in Fig. 23 for one degree of freedom, we find
oo=1, k;, =0, and k, = L.

4.2. The Maslov Index

Our calculation of momentum-space wave functions has shown that a
WKB wave function consisting of a single branch in one representation
may result in multiple branches in another representation, exactly as we
have hypothesized in Eq. (4.3) for the solution of the time-dependent
problem in phase integral theory, and that the branches differ from one
another by phase shifts which are integral multiples of /2. We can now
turn this process around, and argue that if we believe the multiple branch
form for the final wave function ¥(x”, t") shown in Eq. (4.3), then the
relative phase shifts between the branches can be determined by switching
to another representation in a region straddling the x-space caustic, such
that the region is caustic-free in the new representation. We then simply
demand that the transformed wave function be continuous over the region
in question. A rigorous justification of this prescription may be found in the
books by Maslov and by Maslov and Fedoriuk and will not be given
here, but the idea is certainly compelling and plausible. Here we will simply
proceed to work out the details of the prescription.

We will use the initial position x' as coordinate on the final
Lagrangian manifold L”, as discussed earlier, so the matrices dx”/0x’ and
Op”/op" are smooth and finite on the L”. The configuration-space caustics,
which separate the branches of Eq. (4.3), are the places on the Lagrangian
manifold where det(dx”/0x’) vanishes. We will assume that these caustics
are surfaces of dimensionality f—1 on the f-dimensional Lagrangian
manifold, thereby separating two f-dimensional regions of the manifold.
(This assumption is typically valid, but not always; we might have a case
such as illustrated in Fig. 12, or we might find that the singular set has
kinks or portions of dimensionality less than f — 1. See Arnold'® for more
details on this point.) We will also assume for simplicity that momentum-
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space caustics do not coincide with configuration-space caustics, so that
det(ép”/dx’) is nonzero in a region straddling the configuration-space
caustic. Later we will relax this assumption, but for now it means that
dx"/0p" = (0x"/0x')(0p"/0x') ™" is finite and well behaved, and that caustics
are equally well signalled by the vanishing of det(dx"/dp”) as by that of
det(dx"/0x").

We concentrate on two branches, say =1, 2, of Eq. (4.3). On per-
forming the stationary phase evaluation of the Fourier transform to obtain
é,(p", t") for each of the branches, we find, first, that the amplitude
A,(p", t") is continuous across the caustic, even though A,(x”, t") is not.
This follows from combining the result of the stationary phase evaluation
of the integral with Eq. (4.1),

”"

T "ogn "ogn X
A )=, ) |25
/4

1/2

=A(x', 1)

’

o

1/2

(4.10)

Second, the phases of the two branches of ¢,(p”, t”) can be written
S,(p")—ix,n/2 + inym/4, where S,(p”)=S,(x")—x"p", where k, repre-
sents the indices in Eq. (4.3), presumed as yet unknown, and where «, is
the index of inertia of ox"/dp” = (6>S(x")/ox" 6x")~ . Since S,(p") is
automatically continuous across the caustic, demanding equality of
momentum-space phases requires that

Ay — &y

2

(4.11)

K2=K1+

Thus, we can say that the change in x across a caustic is the number of
eigenvalues of dx"/0p” which change from negative to positive at the
caustic, minus the number which change the other way. The bounds on Ak
are therefore

—n<de< +n (4.12)

where #n is the order of the caustic.

This Ax links two branches of (x”, 1"} together. By extending the
process, it is possible to associate a total dx measured between the
endpoints of a curve segment on a Lagrangian manifold, which may cross
a number of caustics and straddle several branches. We assume that the
result of this computation does not change if the path is continuously
deformed, while being confined to the Lagrangian manifold. This is a con-
sistency requirement, discussed by Maslov and by Maslov and Fedoriuk
and by Arnold.*¥

If it should happen that momentum-space caustics coincide with con-
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figuration-space caustics, then we must use a mixed representation Q, com-
posed of some commuting mixture of the original x’s and p’s. Then the
transformation to the Q-representation involves a Fourier transform in a
smaller number of variables than f. Otherwise, all the arguments above are
repeated, with only minor changes.

The quantity Ax, associated with a directed curve segment on a
Lagrangian manifold, is the Maslov index of that segment. Notice that the
curve does not have to be the orbit of a physical system; indeed, for the
time-dependent problem we have considered, it usually is not. Notice also
that the Maslov index really only depends on the geometry of the
Lagrangian manifold in phase space, and on its projection onto configura-
tion space; the origin of the Lagrangian manifold in some dynamical
problem is irrelevant. The Maslov index is, however, dependent on the
representation (x in this case) being used. Although the Maslov index does
not change under continuous deformations of the curve, it may change
under discontinuous omnes; for example, on an invariant torus of an
integrable system, there may be more than one topologically distinct path
joining two given branches, and the Maslov indices of these two paths are
not necessarily the same. Thus, the Maslov index is not simply a relative
property of two branches, but depends also on the path which links them.

4.3. The Morse Index

The computation of the Maslov index we have just described allows us
to determine the relative phase space shifts between the branches of the
wave function (x”, t”) at a fixed time, but it does not directly allow us to
determine the absolute phase of any branch. A slight modification of the
method, however, will remedy this shortcoming. That is, we simply repeat
the process of patching our way through caustics by switching to the
momentum (or other appropriate) representation, not along a curve on the
Lagrangian manifold, but rather along an orbit. For example, when an
orbit is at an x-space caustic, as in Fig. 24, we transform to (say} the
momentum representation in some time interval around the caustic, and
over some interval on the Lagrangian manifold straddling the caustic.
Continuity of the transformed wave function then leads to the same rule as
above, formulated in terms of the eigenvalues A of the matrix,

azS(x)}‘l_(?x (4.13)

A(t)=|:6x6x _%

and the direction in which they pass through zero. The only difference is
that now A is considered a function of time along an orbit. Since « is
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D

X

Fig. 24. An orbit is passing through a caustic. The behavior of the eigenvalues of A = dx/dp,
considered as a function of time along the orbit, determine the jump Ak in the index «.

known to be zero at t” =1t', the changes Ax along an orbit determined by
this rule allow us to determine the final «,’s for all the branches.

This method for computing x, can be simplified in the case of
Hamiltonians which have the form of kinetic plus potential energies, with
or without magnetic fields. To do this, we require an equation of evolution
for A along an orbit. Let éz=(dx, dp) be a small displacement vector
tangent to the Lagrangian manifold, whose base is on the orbit of interest
and whose tip is carried along by the flow, as in Fig. 25. The equations of

P2
by

X2

X1

Fig. 25. Small vectors dz tangent to a Lagrangian manifold are transported along with an
orbit. The properties of these vectors determine the locations of the caustics and the jumps in
the indices x.
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evolution of éz are just the linearized equations of motion obtained by
replacing x(t), p(t) in Hamilton’s equations by x(¢)+ dx(z), p(r)+ dp(t)
and expanding to first order in small quantities. The result is

ox=H,, 6x+H,,dop

(4.14)
op=—H, ox—H,,dp

where H,, is the f x f matrix 0’H(x, p)/dp 0x, etc., evaluated as a function
of time along the orbit. Notice that since oz = (dx, dp) is tangent to the
Lagrangian manifold, its x and p components are related by ox(z)=
A(t) dp(1).

Let us repeat this process for a collection of f linearly independent
vectors 6z, 6z tangent to the Lagrangian manifold, as in Fig. 25, so
that each of these vectors obeys Eqs. (4.14). Let us also stack the x and p
components of these f vectors columnwise to form two fx f matrices
A, C given by A, =x"®, Cy=3p®, so that A(z)=A(r) C(¢). Then the
equations of evolution of A and C are just Egs. (4.14), with dx and Jp
replaced by A and C, respectively.

Assuming for simplicity that x-space caustics do not coincide with
p-space caustics, the matrix C will be nonsingular in the region around the
x-space caustic, through which we wish to patch. Then in this region we
can write A=AC™*, or

A=AC'—-AC~'CC '=H,,+H, A+H,+AH,_ A (415)

This is the desired evolution equation for A.

We can now convert this into an equation for the evolution of the
eigenvalues A, whose vanishing signals a caustic. Let e be a normalized, real
eigenvector of A, such that Ae=Jle. Then we have A=e-A -e (the terms
involving e - é cancel since e is normalized). Therefore

i=e-H,,-e+2(e-H, -e)+i%e-H,, e) (4.16)

From this we see that when A =0, A> 0, since the matrix H,,, which is the
inverse mass tensor, is positive definite. Therefore the index x, considered
as a function of time along an orbit, always increases at caustics, since all
the vanishing eigenvalues of A pass through zero from negative to positive
values. The amount of the jump is equal to the order of the caustic. (We
need not worry about running out of negative eigenvalues of A as we
proceed along an orbit; the analysis above is only applicable to the region
near the x-space caustics, where we assume there are no p-space caustics.
In between x-space caustics, however, there may well be p-space caustics,
at which some eigenvalues of A will change sign by diverging.)
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Altogether, for kinetic-plus-potential systems we have a simple rule,
which says that the index x is simply the count of caustics (multiplicities
included) encountered by an orbit passing from the initial to the final
Lagrangian manifolds. This rule, and its relation to the positive-definiteness
of the mass tensor, has been discovered and rediscovered a number of
times; it is discussed by Maslov, Pechukas,®" and Levit et al.®® The
index k obtained by counting caustics is properly called the Morse index.
In the present context, the Morse index can be viewed as a special case of
the Maslov index if we enlarge our phase space to include time and energy
as conjugate variables. It then turns out that the Morse index is the Maslov
index of a curve segment (namely the orbit itself) which lies on a
Lagrangian manifold in the extended phase space.

By whatever name, the Maslov prescription for computing the index
by demanding continuity in transformed wave functions is more general
than counting caustics because it applies to Hamiltonians in which the
matrix H,, is not positive definite. It also applies to any Hamiltonian in
representations other than the x-representation; for example, if we were
interested in solving the initial value problem of phase integral theory in
the momentum representation, then all the arguments above would be
repeated, with the roles of x and p swapped. Then the change in sign of the
eigenvalues would be determined by the matrix H,,, which in general is
not definite. The Maslov index also applies to curve segments which are
not orbits, as one often requires in quantization problems. For such
segments, the index does not necessarily increase at caustics, even for
kinetic-plus-potential problems in the x-representation. Further discussion
and algorithms for computing the Maslov index can be found in refs. 22
and 23.

5. THE VAN VLECK FORMULA

Let us now apply time-dependent WKB theory to the initial wave
function Y4(x)=34(x —x’) at time ¢=1', as discussed in Section 2, in order
to find a WKB expression for the propagator at a later time. We
immediately encounter a minor problem, namely that the initial wave func-
tion does not have the WKB form shown in Eq. (2.4), so we cannot iden-
tify an initial amplitude and phase. The problem is easily circumvented,
however; we simply work in momentum space, in which the initial wave
function is

1 px’
o) = g own (~ ) (51)
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Therefore the initial amplitude and phase are Ay(p)= (2nh)~7* and
So(p)= —px’, and the WKB representation is exact. Working in momen-
tum space for small times is a natural approach in the spirit of Maslov’s
theory. It is an approach which is also taken by Ozorio de Almeida.**

For a fixed value of x’, the initial Lagrangian manifold appears as
in Fig. 12, and we see that the failure of the WKB form in the
x-representation is due to the fact that the initial Lagrangian manifold in
the x-representation consists entirely of caustic points. It is, in fact, a
perfect focus (a caustic of order f), as the wave function W4(x) =3d(x —x')
indicates.

For short times, we expect the regions of the initial Lagrangian
manifold containing small initial momenta to have evolved only a small
amount, so that no momentum-space caustics will have developed. This is
illustrated in Fig. 26 for the double-well oscillator. Notice that in the figure,
the final Lagrangian manifold is almost a straight line, as was the initial
Lagrangian manifold. This is because for short times and small initial
momenta, the evolution is dominated by the kinetic energy, which
generates linear transformations on phase space. This point will be
examined more carefully in a moment.

For longer times, we expect momentum-space caustics to develop.
These are illustrated in Fig. 27, in which up to five momentum-space
branches are visible. The stretching and kneading of the Lagrangian
manifold which is evident in Fig. 27 is leading to structures which have
been called “whorls and tendrils” by Berry et al.'®) Actually, even for short
times, there may be multiple branches, because initial conditions at large

Momentum
———

n Lol [T ST SET U SET TS BT S N
6 8 1.0 12 14 16
Position

Fig. 26. The initial Lagrangian manifold x'=1.0 at #'=0 and its evolved image at 1" =02
for the 1-dimensional double-well oscillator with potential ¥(x)=x*— x> Two orbits are
shown.
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Momentum
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Position

Fig. 27. The initial and final Lagrangian manifolds for the same system at 1" =2.0. Five
orbits are shown.

momenta may lead to convolutions in a short time. For example, the
Lagrangian manifold in Fig. 26 would show arbitrarily many momentum-
space caustics if the diagram were enlarged, because high-momentum
particles in a sharply rising potential can bounce many times in a small
elapsed time.

We will refer to the one branch illustrated in Fig. 26 as the “principal
branch,” which exists within bounds on momentum and time which are
classical, ie., of order #° This branch has a Maslov index in momentum
space of k=0, because for short times the orbits do not encounter any
momentum-space caustics. This is shown clearly in Fig. 26. The principal
branch also has a single-valued projection onto configuration space (except
at t=1"), so it corresponds to a single branch in the configuration-space
wave function as well.

Using the WKB theory leading to Eq. (4.3), but with the replacements
x - p, p—> —x, we can immediately write down the final momentum-space
wave function,

’

1 1/2

(2nh) 7"

op

det ——;
€ apll

¢p", 1))=Y

&

X exp {é [—p'x' +R(p", t";p', )] — i g} (5.2)
where the initial amplitude and action have been taken from Eq. (5.1). In
this equation, x’ is regarded as a fixed parameter of the WKB problem.

To find Y(x”, t”), which is the propagator K(x", ¢"; x', t'), we simply
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Fourier transform Eq. (5.2), using the stationary phase approximation. We
note that the momentum-space action R can be written

R(p", 1", p'. t) =f —xdp—Hdt=R(x", t";x', t'y—x"p" + x'p’ (5.3)
orbit

which allows the final phase to be written in configuration-space terms. We
find

eian/4 ap/ 172 a?_R —1/2
"t")=) ———|det —— det ———
l//(x ) %(27[}1)//2 € 6]7” ¢ apu apl
exp | L R(x", " x', 1) — i © (5.4)
p P X, ,X, K2 .

where o is the index of inertia of 02R/dp” ép’ = — 6x"/dp”. Note that the
determinant factors can be combined to give det(dp’/dx").

Assuming we have a kinetic-plus-potential Hamiltonian, we can
evaluate the index of inertia explicitly for the principal branch. We simply
expand the solution of Hamilton’s equations to first order in t=¢"— ¢, to
get ‘

x=x+loy 0(1?)
m (5.5)
p'=p +Fx', t)t+0(z?)

where F(x, t) is the force, and then we eliminate p’ to soive for x” as a
function of p”, treating x', ¢, " as parameters. This gives

"

=x+L 11 0@z?) (5.6)
m

which is the equation x” = x"(p”") of the final Lagrangian manifold in the
momentum projection. The fact that it is a straight line through O(r)
explains the appearance of Fig. 26; to this order, it does not depend on the

potential. From Eq. (5.6) it foliows that
oR___ext_
op/ op;  0p;

~8;—+0(z?) (5.7)
m

so that all the eigenvalues of 3*R/dp” dp’ are negative for short times.
Therefore o = — f for the principal branch, and we can write

’
b
"

1 dp
(2rif)/” % 'E

1/2
K(x”, tu; x/’ t/) —

X eXp [é Ry(x", t"; x', t')— ik, g} (5.8)
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where ;> means /™4, and where x, is now the Maslov index in configura-
tion space relative to the principal branch, for which x =0. It is also the
count, multiplicities included, of configuration-space caustics encountered
along an orbit, but not including the order-f caustic at ¢ = ¢'. This follows
because any given orbit is on the principal branch for short enough elapsed
times, when x =0, and because afterward, the configuration space caustics
can be counted as in our discussion of the Morse index in Section 4. The
configuration-space caustics of the propagator are properly called conjugate
points, because they are places where there is achieved at least a partial
refocusing of the initially perfectly focused collection of particles.

Equation (5.8) is the Van Vleck formula. It is exact for Hamiltonians
which are at most a quadratic polynomial in x and p, such as the free par-
ticle, the harmonic oscillator, a particle in a constant magnetic field, and
the components of angular momentum, e.g., L, = xp, — yp,, regarded as an
evolution operator. These Hamiltonians generate linear transformations
on phase space, so there is always at most one branch. For other
Hamiltonians, the Van Vleck formula is only the leading term in an expan-
sion in #, and has O(#) corrections.

If x' is regarded as a variable, then the geometrical picture correspond-
ing to the Van Vleck formula at t=1' is that of a foliation of phase space
into Lagrangian manifolds as shown in Fig. 16, representing the identity
canonical transformation. At later time ¢ =¢", the foliation is the image of
that in Fig. 16 under the flow; now the canonical transformation is that
taking final coordinates (x”, p”) into initial coordinates (x’, p’). This is a
time-dependent canonical transformation, for which the F-type generating
function is Hamilton’s principal function R(x”,t";x’,t’), with the final
variables considered “old” and the initial ones considered “new.” In quan-
tum mechanics, this canonical transformation corresponds to the unitary
change of basis, taking one from the complete set of continuous states {x” >
at the final time into the evolved images of the initial states U(z”, ') |x’ ).
Of course, the propagator is just the component matrix of this unitary
transformation, with continuous indices.

6. CONCLUSIONS

This survey of the geometrical structure of the Van Vleck formula has
served several purposes. It has provided an introduction to Maslov’s
theory, which is particularly elegant in the case of time-dependent
problems; it has clarified the relationship between the Van Vleck formula
and phase space geometry, which is not only necessary for a proper under-
standing of the Van Vleck formula, but also for exploring such questions
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as its long-time limitations; and it has provided a necessary introduction to
the geometrical structure of the Gutzwiller trace formula. The latter subject
is developed in considerable detail in ref. 7, in which it is shown how the
Gutzwiller trace formula is obtained by projecting one Lagrangian
manifold onto another in a doubled phase space, and in which numerous
other geometrical features of trace formulas are explored.
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